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ABSTRACT 
How do sidewalks change over time? Are there geographic or so-
cioeconomic patterns to this change? These questions are important 
but difficult to address with current GIS tools and techniques. In 
this demo paper, we introduce three preliminary crowd+AI (Artifi-
cial Intelligence) prototypes to track changes in street intersection 
accessibility over time—specifically, curb ramps—and report on 
results from a pilot usability study. 
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1 INTRODUCTION 
In 1990, the US passed the Americans with Disabilities Act (ADA) [1] 
requiring that public infrastructure—including sidewalks and street 
crossings—be accessible. Yet, more than 30 years later, cities struggle 
to meet accessibility requirements, often only pursuing large-scale 
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sidewalk renovations in response to civil rights litigation such as in 
New York [12], Seattle [9], and Los Angeles [18]. Observing these 
challenges and to help stimulate and structure ADA renovations 
and city planning, in 2015, the US Federal Highway Administration 
requested that local governments develop sidewalk ADA transi-
tion plans, including an inventory of accessibility barriers and a 
description of accessible renovations [25]. In a recent study of 401 
municipalities, however, only 54 (13%) had published plans and 
only seven met the minimum ADA criteria [7]. 

Such findings reflect the challenge in making infrastructure ac-
cessible. Viable solutions require substantial political, economic, 
and technical investment—training, resources, community involve-
ment, specialized tools, and the work and coordination of multiple 
governmental agencies [19]. And there is a lack of open tools, tech-
niques, and datasets to track how urban infrastructure is becoming 
more or less accessible. To help understand how sidewalks are 
changing, where resources are being invested, and whether gov-
ernments are acting on ADA requirements, our research group is 
developing new spatio-temporal tracking tools to analyze, visu-
alize, and study changes in urban accessibility over time. While 
our current focus is on the US, tracking sidewalk accessibility is 
of interest to cities across the world [8]. With our tools, we hope 
to support overarching research questions such as: How does side-
walk infrastructure change over time? What are the spatiotemporal 
patterns of change? How do these changes correspond to socioeco-
nomic and demographic factors? Where does inaccessibility persist? 
As a preliminary step towards addressing these questions, we in-
troduce three new experimental crowd+AI (artificial intelligence) 
prototypes for semi-automatically tracking changes in street inter-
sections, specifically curb ramps (or “curb cuts”)—Figures 1-3. While 
curb ramps are only one part of accessible urban infrastructure, they 
are critical to mobility and required by the ADA [29]. Moreover, 
prior work has found that trained computer vision (CV) models can 
detect curb ramps at higher accuracy than surface degradations 
or sidewalk obstacles [11, 27], making curb ramps a good starting 
place for initial crowd+AI work. 
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Figure 1: With P1: Single View, users label time-series images of individual street corners (in this case, from May 2019 to 
June 2008). The thumbnail menu shows available time-series images at the selected corner, which update in real-time as the 
user draws bounding-box labels with their mouse. Checkboxes indicate a completed (labeled) time snapshot. Automatically 
detected ramps are indicated with small red squares, which we can be turned on/off. We plan on conducting experiments to 
examine the potential benefits of these automatic detections, particularly given that they are not always accurate. 

Studying and characterizing spatiotemporal patterns of urban 
change from remote imagery is a longstanding thread in the urban-
and geo-sciences [13, 23, 28]. Recent developments in CV, specif-
ically deep learning, and the widespread availability of historic 
street-level imagery have enabled new urban change detection 
techniques [3, 5, 15, 21, 26]. However, limited work exists on ap-
plying these techniques to urban accessibility to characterize how 
and where sidewalks are changing. Below, we describe design con-
siderations for tracking accessibility-related changes in street in-
tersections, three preliminary crowd+AI prototypes, and results 
from a pilot usability study with five users. During the ASSETS 
demo session, we will provide interactive demonstrations of our 
prototypes, solicit feedback from attendees, and guide discussion 
about open challenges and the future of sidewalk “change tracking” 
tools. 

2 UI DESIGN CONSIDERATIONS FOR 
TRACKING CHANGES IN SIDEWALKS 

In brainstorming and working on initial prototypes, we developed 
the following design considerations: 

Humans struggle with change detection. Studies in percep-
tual psychology have consistently found that humans perform 
poorly in identifying differences between images [17, 22]. How can 
we create tools that help humans identify and label accessibility 
features in time-series imagery while mitigating these perceptual 
effects [22]? 

Leverage temporal similarity. Unlike general street scene la-
beling tasks [6, 16], we are interested not just in identifying objects 
in a single snapshot but tracking these objects over time. How can 
we leverage structural similarities in time-series photography to 
create efficient and accurate labeling interfaces? 

Combine AI + human labeling. Similarly, how can humans + 
machine learning work together to maximize labeling efficiency and 
accuracy [4, 14]? How should AI-based detections and uncertainty 
be represented to humans? Can the underlying ML model also 
leverage similarities across time-series images? 

Interactive training. Ultimately, to scale our approach, we will 
deploy our interfaces to crowdworkers who likely have minimal 
experience with sidewalks, curb ramps, and advanced labeling in-
terfaces. How can we develop interactive training UIs that allows 
our users to quickly learn and perform accurately in our tasks? 

3 THREE CROWD+AI INTERFACES FOR 
TRACKING CURB RAMPS OVER TIME 

Towards these considerations, we have developed three early-stage 
interactive prototypes for tracking changes in street intersections 
over time, which differ in the amount of simultaneous time-series 
imagery shown, how labels propagate from one time-series snap-
shot to the next (using a derivation of linked editing [24]), and how 
we incorporate a deep learning model for automatic curb ramp 
detection (from [27]). Rather than ask users to detect changes, users 
find and label curb ramps in each image. To improve labeling effi-
ciency, we leverage similarities across time shots to auto-propagate 
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Figure 2: With P2: Grid View, thumbnails are larger and presented in a grid allowing us to show up to 9 time-series images 
simultaneously. Unlike P1, P2 uses linked editing [24] to leverage structural similarities across time. When the user draws or 
edits a bounding box on the most recent time snapshot (always shown as the top-left thumbnail, which in this case is May 
2019), these annotations are auto-propagated to all previous time shots using x,y pixel location similarity. If CV detections 
are turned on (red squares), we attempt to auto-align propagated boxes based on inferred curb ramp locations; however, these 
alignments are not always accurate due to noise in the ML model (e.g., there are two incorrect CV detections on the July 2011 
time shot above). The user can make micro-edits or deletions, as necessary, on the propagations. 

Figure 3: Similar to P2, P3: Panorama View also includes linked editing [24] and auto-propagation of labels across time; how-
ever, unlike P1 and P2, which serve segmented intersections cropped into four individual images (one corner per image), P3 
presents full panorama views. Benefits of panoramas include greater context for the user and potentially faster overall label-
ing; however, the curb ramps themselves are small and only ∼3-4 time-series panoramas can fit on a laptop screen, so users 
need to scroll to access older images. To help users more closely examine panorama parts, we have an always-available zoom 
inset of the mouse location (shown currently at the May 2019 panorama above). In this particular example, the intersection 
was renovated between June 2008 (bottom pano) and July 2011 with ADA compliant ramps and three ramp additions. These 
changes are identified with our techniques. 

labels through linked editing and CV. Each prototype begins with 
a step-by-step tutorial to train users on the task and the interface. 
Prototype details with example screenshots are shown in Figures 
1-3. 

For our historic street scene dataset, we use Google Street View’s 
“time machine” feature, which provides high-resolution street-level 
panoramas dating back to 2007 captured every ∼1-3 years. Our test 
set consists of 100 intersections drawn from Washington DC and 
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Seattle (50 each). The DC dataset contains an average of 6.4 time-
series images per location (SD=1.7) while Seattle has 7.8 (SD=2.6). 
The first capture dates are 2008 and the last are 2019 (while our 
research is ongoing, this initial test dataset was created in 2019). 

4 PILOT USABILITY STUDY 
To assess the usability and understandability of our prototypes and 
to prepare for larger web-based deployments, we conducted an 
in-person “think aloud” usability study with five participants (ages 
20-45; all had technical backgrounds). Sessions were ∼50 minutes. 
To simulate the experience of using the prototypes in an online 
deployment, we provided limited instruction and, instead, asked 
participants to follow the interactive tutorials. 

Findings. While users were appreciative of the step-by-step 
tutorials, some aspects of label propagation, and the promise of 
CV-assisted labeling, we found important areas for future work. 
First, participants wanted more information on how they should 
label—the size of their bounding boxes, pixel-level precision, etc. Sec-
ond, participants were confused about label propagations—should 
they trust them or modify them? Because auto-propagations only 
work in one direction (labeling is propagated backwards but not 
forwards through time) and because only some operations are sup-
ported (additions but not deletions), users did not have a strong 
understanding or confidence in this feature. Finally, though the 
automatic CV detections (visualized as red squares) were deemed 
helpful in drawing attention to curb ramps, participants felt that it 
was too often incorrect and thus distracting (though one participant 
enjoyed “outperforming” the AI). 

5 CONCLUSION AND FUTURE WORK 
In this demo paper, we introduced three novel crowd+AI tools 
aimed at rapidly labeling and tracking changes in sidewalk accessi-
bility features over time. In addition to addressing results from our 
usability study, we aim to support richer qualitative labels about 
how curb ramps are changing (e.g., tactile strips, flares, steepness) 
and other accessibility-related labels for crosswalks [2], accessible 
pedestrian signals [10], and street/sidewalk surfaces [20]. We also 
plan to conduct a larger-scale deployment study to further assess 
our tools and progress towards public deployment, like Project Side-
walk [20], for tracking changes in urban accessibility infrastructure 
across cities and creating open “change tracking” datasets. 
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